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In this paper we use existing perturbation theories for partial differential equations 
that are approximately integrable. These methods are then used to study the BBM 
equations, considered as a perturbation of the KdV equations. We show, analytically, 
that the amplitudes of two solitary waves are altered after interaction. The change 
in amplitude is also calculated. 

1. Introduction 
The name soliton was first used in connection with the solitary-wave solution of 

the Korteweg-de Vries equation. This equation was first derived by Korteweg & 
de Vries (1895) as a model for the unidirectional propagation of water waves of small 
amplitude and long wavelength. One set of solutions of the KdV equation is a family 
of solitary waves, and the numerical studies of Zabusky & Kruskal (1965) indicated 
that the result of the nonlinear interaction of a pair of unequal solitary waves leaves 
the waves unaltered, except for a phase shift. The proof that this type of interaction 
happened exactly came from the inverse-scattering method for the solution of partial 
differential equations. This method of solution can be applied to any partial 
differential equation that is termed integrable. Such an equation can be thought of 
as a generalization, to infinite dimensions, of an integrable Hamiltonian system of 
ordinary differential equations where motion takes place on a finite-dimensional 
torus. This torus is determined by integrals of the motion. The inverse-scattering 
method can also be viewed in this light. For partial differential equations the motion 
takes place on an infinite-dimensional torus, determined by an infinite number of 
conserved quantities or integrals of the motion. 

An alternative model to the KdV equation, first used by Peregrine (1964) for its 
advantages in numerical computations, is the BBM equation. This equation has been 
studied extensively by Benjamin, Bona & Mahoney (1972). Recent results by McLeod 
& Olver (see Bona, Pritchard & Scott 1980) indicate that this equation, and the full 
Euler equations from which both the KdV and BBM equations are derived, are not 
integrable, since they have only a finite number of conserved quantities. The term 
non-integrable is used in a vague sense here, but such equations can be thought of 
as a generalization, to infinite dimensions, of a non-integrable Hamiltonian system 
of ordinary differential equations where often there is only one conserved quantity, 
namely the Hamiltonian. These systems of ordinary differential equations have been 
studied by many authors and a summary of methods available can be found in 
Arnol’d (1983). 
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A recent theorem by Bona (1978) proves that the solutions of the KdV and BBM 
equations remain close for times that are not too large. However, the bound on the 
difference grows with time, and numerical evidence indicates that, for the BBM 
equation, two unequal solitary waves produce a third 'rarefaction ' wave or dispersive 
tail. As a result, the final amplitudes of the two waves are slightly altered 
after interaction. Details of this numerical investigation are given in Abdulloev, 
Bogolubsky & Makhankov (1976) and Bona et al. (1980). 

Hamiltonian systems of ordinary differential equations that are approximately 
integrable can be solved by perturbation methods; again see, for example, Arnol'd 
(1983). In  this paper we use a similar technique to obtain the solution of the BBM 
equation from its approximate solution given by the KdV equation. This will predict 
the change of amplitude of two solitary waves after interaction. In $2 we develop 
the theory applicable to any partial differential equation that can be approximated 
by an integrable equation. In $3 we apply this theory to the BBM equation and 
consider the interaction of two solitary waves. 

2. Scattering theory 
In this section we review the scattering-inverse scattering theory for integrable 

partial differential equations, and show how this can be modified for equations that 
are perturbations of integrable equations. The notation follows closely that of 
McKean & van Moerbeke (1975) and McKean (1978), and readers are referred to 
these articles for a fuller description of scattering theory and additional references. 

We first consider u = u(x) E Cr, the class of infinitely differentiable functions 
vanishing rapidly at f CO. Let D denote d/dx and define a linear operator Q acting 
on functions of x by 

Now let f be a solution of 
Q = -D2+u. (2.1) 

Q ( f )  = A f t .  (2.2) 
For 0 < h < co the spectrum of Q is continuous. If we write h = k2 then with k =i= 0 

there are two independent solutions which have the following behaviour at 00 : 

where 

is unitary with S,, = S22. Then the Wronskian 

x+-CO, +a, (2.3) 

In addition to the continuous spectrum there may be a finite number n of additional 
$screte eigenvalues h = - k,2, i = 1, . . . , n. Now there is only one eigenfunction 
f - 1 xe-kix as x + + m  (and - constant xe+k(x as x+-co). We also define the 
norming constant ci by the equation 

m 
c f l  1jI2dk= 1. 

-m 

t We use the notation Q(v) = -v" +uv for Q acting on the function v and reserve the notation 
Qv for the linear operator of multiplication by v followed by Q. Thus Qv(w) is the operator Qv acting 
on w and is equal to -(vw)"+uvw and is of course in this instance Q(vw). 
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The spectral data S,, and the numbers {k,, ci}, i = 1, . . . , n are called the augmented 
spectral data, and the fundamental theorem of scattering theory is that the map from 
u to the augmented spectral data is 1 : 1 and onto (see, for example, Levinson 1953 
and Deift & Trubowitz 1979). The backward or inverse scattering is achieved via the 
Gelfand-Levitan integral equation (see Gelfand & Levitan 1951 or Agranovitch & 
Marcenko 1963). 

Now suppose that X and K are skew-symmetric operators, acting on functions of 
x, with the following properties : first, that X induces a local Hamiltonian flow in C y  , 
and second, that the following expression is an identity: 

X(u) = [Q,KI, (2.6) 

where [Q, K] is the usual commutator QK-KKQ. 
The first property means that the equation 

au 
- = X(u) 
at (2.7 ) 

can be solved in Cr for all time -GO < t < 00. (See Arnol'd 1983 for more general 
information on Hamiltonian systems.) 

We shall work as far as possible with the formal operators X and K, but with 
X = -iD3 + uD + Du, the equation 

au 
- = X(u) = -+zP+uuf + ( 7 2 ) '  = 3uu'--;zu", 
at 

where I 

is the Kortewegde Vries equation, and Lax (1968) discovered the identity 

where K = 2D3-$uD+Du). 

tion, and the corresponding eigenfunctions move according to the equation 
The second property means that under (2.7), -K is the infinitesimal transforma- 

f = - K ( f ) .  at (2.10) 

For the KdV equation, the scattering method yields the results 

S,l(t) = ~ l l ( t O ) >  (2.11) 

sl2(t) = S12(t0) exp [ -4Wt  - to)], (2.12) 

k, = k,(to), i = 1, ..., n, (2.13) 

c2 , - - ci(to) 2 exp [4ki(t-to)], i = 1, ..., n, (2.14) 

where the constants Sll(to), S12(to), k,(to) and cr(to) are determined from the initial 
solution u at t = to. 

If now we suppose that u satisfies the perturbed equation 

au 
= X(u) + E X 1 ( U )  at 

- (2.15) 
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then the methods of Karpman & Maslov (1977a, b, c), Keener & McLaughlin (1977), 
and Kaup & Newel1 (1978) allow us to obtain the results 

B t  

21k Ito 812(t) = S12(t0) exp [-4ik3(t-to)]+-;- exp [4ikS(~-t)]I11(~)d7, 

t 

k:(t) = ki(to)-€ c:(T) I1(7) d7, s,. 
t 

t o  
c: ( t )  = cg(t)--s I c t ( 7 )  e x p [ - 4 k ~ ( ~ - t ) ] I ~ ( ~ ) d ~ ,  

where 

and 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

Equations (2.16)-(2.19) are simply a restatement of the original partial differential 
equation (2.8), and should be regarded as integral equations, since the integrals 
defined by (2.20)-(2.22) are functionals of Sll, S12, k, and c, via their dependence on 
u. However if we expand u as a power series in B with the first approximation, uo, 
satisfying (2.8), then uo determines the scattering data correct to order B ,  and the 
inverse-scattering method can be used to determine u correct to order B .  

3. Application to BBM equation 
3.1. The BBM equation 

The BBM equation applicable to water waves of small amplitude and long wavelength 
is 

1 ( ax* 2ax*2at* * 

av av av  1 a3v 
- + - = s  3v-+-- 
at* ax* 

In the context of the water-wave problem, ( -  V )  represents the vertical displace- 
ment of the surface of the liquid from its equilibrium position, scaled so that the 
maximum displacement is of order 1. x*, the horizontal coordinate and t * ,  the time, 
are both dimensionless independent variables, with length- and timescales being 
chosen so that all derivatives are of order 1. For a fuller description of the scaling 
and a derivation of the more familiar KdV equation see, for example, Miles (1977). 
For a fuller description of the BBM equation see, for example, Benjamin et al. (1972). 

If we introduce a moving coordinate x and a scaled time coordinate t given by 

2 = x*-t* , t = E t * ,  (3.2) 

and write V(X*, t * )  = u(x, t), (3.3) 
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then (3.1) becomes 

au 1 a3u a3u au 
at ax 2 ax3 axsat -- - 3u----++e- = X ( u )  +&D2(ut). (3.4) 

To write this in Hamiltonian form we simply invert the operator I-BD2 to obtain 

However for most purposes it will be sufficient to use the approximation 

au 
- at = X(u)+&D2(X(u)) .  (3.6) 

3.2. The solitay-wave solution of the Kd V equation 
The multisoliton solution of the KdV equation is best obtained via the transform- 
ations used by Whitham (1974). He introduces variables P and E defined by 

P = -2D(l0g E), (3.7) 
ap 
ax ' 

u = -  

so that 

and 

/ -  a 
ax - _  where - .  

The solution corresponding to one solitary wave is 

E = 1 +exp{-(8-O0)} 

and u = -ik2 sech2f(8-8,), 

where k and 8, are constants and 8 = kx-ik3t. 
If we have two solitary waves, then the corresponding solution is 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

and 

kf El + ki  E, + 2(k ,  - k2), El E, + 
E2 , (3.13) 

where El = exp{-(8,-8,)}, 8, = k1x-fk3t. (3.14) 

We then have the following results for the eigenfunctions. 

u = - 2  

and F2 satisfy 

-F;+u~( = - i k i &  (3.15) 

k -k 

E (i = 1,2, j * i).  (3.16) 
E I ( l + ~ E , )  

and are given by I$ = 
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Then 

and 
2( E E  - E 2 )  

u = - 2 Z k , 2 e  E2 

(3.17) 

(3.18) 

(Note that the discrete eigenvalues are A = - ($k,)2 and - ($k,)2. The factor off has 
been introduced for convenience.) 

3.3. The two-solitary-wave solution of BBM 
To obtain an approximation to the two-solitary-wave solutions of BBM, we use (3.13) 
as the initial condition as t+- co. Then (3.13) represents the first approximation to 
u, and (2.11)-(2.14) represent the first approximation to the scattering data. 
Equations (3.13)-(3.16) are then sufficient to determine k,2 correct to order e.  From 
(3.6) we have X,(u) = iD2(X(u)), and correct to order e (2.18) yields 

Then using (A 2 )  and (3.17) we obtain 

since D3 is antisymmetric and I$ E Cr . Therefore 

m 
-- q ( u D + D u - X ) ( E )  
dt 

since 

(3.20) 

(3.21) 

(3.22) 

see Appendix A. 
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By using (3.16) and (3.18) we obtain, after considerable algebra (see Appendix A), 

where 

Similarly we obtain 
kl-k dk  2- 

dt 

(3.23) 

(3.24) 

(3.25) 

As a consequence of (3.23) and (3.25) we obtain a conservation law 

k: + ki = const, (3.26) 

although this applies to the approximation (3.6), and not to the full BBM (3.5). 
We now pose the following problem. If we start with two given solitary waves a t  

t = - 00 what will be the form of solution as t + + 00 1 
In  order to compute the solution u correct to order E we need to find the scattering 

data correct to order s and then use the inverse scattering method. However if we are 
only interested in the emerging solitary waves, then (3.23) and (3.25) are sufficient 
to determine their amplitudes and the phase change may be computed by solving 
(2.19) for ci. 

Since both k, and k, are slowly varying functions of time, we might think that we 
could work out the total change as 

regarding k, and k, as constant. However, if we introduce the integral 

J(k,, k,, t)  = Jm YCk 
-m 

we may show (see Appendix B) that 

a J  
- = I, 
at 

(3.27) 

(3.28) 

(3.29) 

the partial derivative denoting the derivative with respect to t keeping k, and k, 
constant. Equation (3.27) would then give as solution 

[k,] = 0. (3.30) 

Thus, to find the total change in k, we need to proceed to the second approximation. 
There are two terms that arise in the second approximation. One comes from the fact 
that we have approximated the full equation (3.4) by (3.6), and a second term comes 
from the expansion of (3.23) and (3.25) to second order. 

We shall show (see Appendix C) that (3.30) also holds for the expression for dk,/dt 
derived from the full equation (3.4), so that we only need to concentrate on the second 
term. 

With L, = %k4,(kl - k,)/(k, + k,) and L, defined similarly, we write 

a J  - sL,-. 
dt dt at 

- = - E L l t ,  dkl a J  2- dk 
(3.31) 
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so that 

-s2L: J m  (E-(:y 8) g d t ,  (3.33) 
-m 

where in the s2 terms we have assumed that the variation of k, and k, with time can 
be ignored. Thus, 

(3.34) 

After some considerable algebra (see Appendix D) this reduces to 

[kll = s2k! G(P) 11(/9), (3.35) 

G(B) = -- 9 (3.36) 
where 1 1 + lo$ + 584 + 2( 7 + lo$ -84) $ log /9/ (1 - $) 

270 l + P  

and 

30i sinh (y - 7 )  c o r n  

I' = J-m {I-, {/? cosh (y/P) +cosh ( ~ - 7 ) ) ~  

p=- k2-kl 
k,+k2'  

(3.37) 

(3.38) 

The integral I, has been normalized so that I,( 1) equals one. Then using the result 

dx 00 

= 2y cosechy - 4y e-y as y + m ,  (3.39) J-,,, cosh x + cosh y 

we may obtain the result 

I,(/?) - 32(@ log/9)2 as /9+0. 

For values of /3 in the range 0 < 
in figure 1. 

< 1 the integral is easily computed, and is shown 

The multiplier G has the following properties : 

G(B) lY dti(1-PL P+1,  

G(p) > 0 0.318 ... < /9 < 1, 

G(B) < 0 0 < /3 < 0.318 ..., 
and G(0)  = -&. 
Thus the change in k, is positive for ,&' > 0.318 ... and negative for /3 < 0.318. The 
graph of the change in k, appears in figure 2. The factor s2ki has been omitted and 
the scale on the vertical axis has been multiplied by lo3 for convenience. 
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FIQURE 1. Graph of the integral Il defined by (3.37) as a function of /? in the range 0 < /? Q 1. 

41 

-4 
0 0.5 1 .o 

B 
FIQURE 2. Graph of the change in k, as a function of /? in the range 0 Q /? Q 1. 

4. Discussion of the results 
The evolution (3.23) and (3.25) shows that the rate of change of k, and k, is of order 

E .  Since from (3.28) J is never negative, and tends to zero as t+  co, the sign of aJ/at 
is positive for large negative times. If k, is greater than k,, (3.23) then gives the 
following result : 

dk, > 0 for t large and negative. 
dt 

16 FLM 182 
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However (3.30) implies that 

[k,] = 0 to order E .  ( 4 4  

This means that k, starts to increase and reaches a maximum before decreasing to 
its final value given by (3.35). This value may be positive or negative, depending on 
the ratio of k, to k,. However, it  is always of order c2. This has important consequences 
when comparing with numerical results. To get good comparison, the two waves must 
have an initial separation which ensures that the integral I defined by (3.24) is o(E) .  

The author wishes to thank J. L. Bona for helpful discussions during a recent visit 
to Chicago and to the Carnegie Trust for the Universities of Scotland, who provided 
funds to make this visit possible. The author is also grateful for the support given 
by the University of Edinburgh during his sabbatical leave spent in part at  the 
University of California, Berkeley. In addition, the preparation of this manuscript 
was supported by the Office of Naval Research, Mechanics Division, Scientific Officer, 
Dr Chuong M. Lee. 

Appendix A 
In this Appendix we prove 

00 [ f'X(U) = o  

where f is the eigenfunction satisfying (2.2), with A belonging to the discrete spectrum. 
The skew symmetry of X gives the following identity for any functions a and p: 

(A 1) 

X(f2) = 2Af2', (A 2 )  

(A 3)  

aX(p) + /?X (a) = D{ 2aPu - +( ap" - a'/3' + a"p)}, 
so that with a = f and p = 1 and using the result (see McKean & van Moerbeke) 

we obtain f ,X(1) = D{ -2h f ,+2  f "-if ,"}. 

Thus 

since u+O and f + O  at 00. 

The skew symmetry of X also gives 

since u + 0 at 00. Therefore 

so that 
m [ f'X(U) = 0. 

Ja3 
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Appendix B 

(3.16) we obtain 
We prove the formulae (3.24) and (3.29). From the definition of the eigenfunctions 

k1-k2k E l+'E,) k -k 
'/( k1+k2 k1-k2+2- 

kl + k2 

2 
= ( k l - k 2 ) q q  l+- { k1+k2 

so that q E ' - q ' P -  ( k l -  - k2)  - E${2E + (k ,  + k2) 4. 
2 -  kl+k,  

Thus using (3.18) we obtain 

( q q ' - q ' q ) u  = -2'2 -k jm - Eb?{2E'+(kl+k2)E)(EE"-E'2). ( B  4 )  
kl+k2 -03 

The term E 3 E ,  E2/Eb may be integrated as 

jm f 1 3 i i E 2  = [- i E Z E 2 l a J  +jm 
E4 -aJ -m -m 

(B 5 )  
E(2E"-  (k ,  + k,) E'}El E ,  

E4 

Repeated integration by parts gives the result 

(qE'--q'q)U=---- k1-k2 E,Ez (E'"+g(k, + k,) E" +?j(k, + k2)2 E') jm 3k,+k, 

, (B 6 )  

9 (B 7)  

kl k2(k1- k2) (E2 -El )  El E2 
k1-k2 s E3 

- - 
3(kl+k2) -m 

E3 or 

16-2 
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which is (3 .24) .  From (3.28) we obtain 

W 
(k!+kif)---&- "'( k ! E l + k ,  S E  , + ( u ) ' ( k ! + k i ) E 1 E z ) }  k - k  

at 2E2 kl + k,  

( E  + k, El + k, E,) 
k: + ki { k! El + kif E, -- 

E3 k1-t k, 
= J-: m E , k : + k ; ) -  2E2 

= J m  {g (.+"-) (k: + kif) +El  E,  9 k, k,(k, - k,)} 
-m k,  + k, 

k : + k i f ] m  
2E2 k ,+k ,  

= I ,  

which is (3.29).  

Appendix C 
Here we prove that the expression for dk,/dt satisfies (3.30) if u satisfies (3 .5) .  
We first notice from (A 6) that 

Thus if u satisfies (3 .5)  we may write 

since the kernel is clearly an antisymmetric operator so that 

(Note here we have not mentioned explicitly the dependence of I?, on t. In reality 
F,(z) = F,(z, t).) Also, since X is an  antisymmetric operator, we may write 

where the kernel K is antisymmetric in the sense that 

Hence we may write 
K(x) = -K( -2). 

so that 
m m m  

O0 dk 
I = [k,]  = $dt = 5 J q(z)q(E)K(z-f ; )dEdzdt .  (C 7) 

-m -m -m -m 
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Using the definition of F, (3.16) we may obtain 

cosh2 (+k2 x - ik;  t + !#I) e-e 
F2- - 2{e-e cosh ( + ( k 1 + k 2 ) x - ~ ( k ~ + k ~ ) t + 8 ) + c o s h ( + ( k , - k , ) x - ~ ( k ; - k ~ ) t ) } 2 '  (C 8) 

where 

Then if we make the substitutions 

I y = x-+(k:  - k, k, + k:) t ,  
7 = t-+(k:- k ,  k ,  + k:) t ,  
7 = +k, k,(k, - k,) t ,  

in the integral of (C 7),  we obtain 

I =  
e-2e 

2 4  k,(k, - k,) 

If we now make the change of variables 

y = w+v, 7 = v--0 (C 13) 

(noting that the precise form of (C 8) and the subsequent expressions alter, depending 
on whether k, - k,  is positive or negative) the integral becomes 

,-ae r w  ra, r m  
G 

I =  J J J cosh2 (+k2(w + v )  + +(e + 7 ) )  
4klkdkl-kz) -w -m -m 

K(2w)dwdvd7. (C 14) sinh2 (+k,(v - w )  + +(e- 7 ) )  

P(w + V ,  7 )  Q(v - w ,  7 )  
X 

Now using (C 5) we may write 

The numerator of the integrand then becomes, after simplification, 

{ sinh (t(kl  + k,) v+ 0 )  cosh+(k,- k,) w +  sinh ( t (k ,  - k,) v+7) 

x {cosh (t( k,  + k,) v + 0 )  sinh +( k, - k,) w + cosh (+(k, - k,) v + 7 )  sinh +( k,  + k,) w } ,  
(C 16) while the denominator becomes 

{e-e cosh (+(kl+k,) (v+w)+O)+cosh (f(k,- k,) ( w + v ) + ~ ) ,  

x {e-e cosh (+(kl + k2) (v--0) + 0 )  + cosh (+(k, - k,) (v--0) + T)} , .  (C 17) 
If we introduce the change of variables 
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we may write 

where 

h, = {sinh +(k,  + k,) 5 cosh i ( k ,  - k,) w + sinh T cosh +(kl + k,) w }  

x {cosh+(k,+k,)~sinhi(k,-k,)w+coshT sinhi(k,+k,)w} (C 20) 
and 

h, = {e-' cosh +(kl + k,) (o + [) + cosh ( t (kz  - k,) w + T)} ,  

x{e-' cosh+(k,+k,) (c-w)+cosh (2(k,-k,)w-T)}2. (C 21) 

From these definitions of h, and h, it is clear that 

h,(w, -5,  -T) = -h,(w, 6, T )  
and 

Hence under the change of variable T* = -T and [* = -C,  we obtain 

Mu, - 5, - T )  = + hl(u, 5, T). (C 23) 

I = - I .  (C 24) 

Therefore I must equal zero, giving the required result. 

Appendix D 

E, (3.12), we obtain the expression 
In this section we establish the result (3.34). From the definitions of J, (3.28), and 
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the final expression being obtained by using an integration by parts. In  the third 
expression in the integrand we write 

(k,-k2l2 (El E2I2 - E E k,+k2 E3 - E3 2 ( -E ' -k lE l -k2E2) ,  

so that 

The integral 

appearing in (D 1) and (D 3) is the integral J ,  so that the contribution it gives to the 
right-hand side of (3.34) is zero. Hence from (3.34) we obtain 

where 

Following the formulation of Appendix C we write 

El E 2 V 2  -4 
E3 

sinh (+(k2- k,) x-a(ki- k:) t )  

4je-O cash (i( k, + k,) 2 -a( k: + k i )  t + 0) + cash (+( k, - k,) x - a( ki - k!) t)}3 t (D8) = -  

and, regarding I, as a triple integral as in (C 7), we make the following substitutions: 

t See note on page 479. Here we make the assumption k,  > k,. 



482 J .  0. B. Byatt-Smith 

Then Il  becomes 

1 

sinh(y-7) sinh(q-7)(Ay+B7-Ce}dydqd7 

{ e-e cosh - k2 + kl y+cosh ( y - r ) }  { e - B c o s h ~ l p + c o s h  ( q - ~ ) }  
X 3 3 (D 10) 

k2 - kl k2-kl 
where A, B and C are constants with 

C =  ("- k2)2 {(k: + k, k, + ki) ,  - 2k: ki}. 
kl k,(kl+ k2) 

Then under the transformation t = -t*, y = -y*, 7 = -q* we obtain 

where 

and 

Jw sfd7 
ce 

Il  = -I ,+ 
30(k2 - k1)' -m 

00 (30)i sinh (y-7) 
dY 

J1(7) = I, cosh (y/p) + cosh ( ~ - 7 ) ) ~  

p=- k2 - kl 
k2+k1' 

Therefore we have the result that 

Jm q d 7  
ce 

I -  ' - +60(k2-k1)2 -m 

Using the same set of transformations on I2  the equation corresponding to (D 12) is 

I ,  = - I 2 ,  (D 16) 

so that I ,  = 0, (D 17) 
and with the definition of (D 13) I, is seen to be equal to 

00 

sf d7. 
k! + ki - 

30(k1 + k,), (k ,  - k,)' j-, . 

The final expression for [k,] from (D 4 )  is then 

which in terms of ,8 (see (D 14) is 

{ 1 + lob2 + 5p + 2(7 + lop -P4) p log /3/( 1 -/P)} Sm d7. s2ki 
[k13 = - 270( 1 + B) --a) 

(D 19) 
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